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ABSTRACT

In this paper, we investigate the normalizer property for the integral
group ring of a torsion group. We show that this property holds for
locally finite nilpotent groups. A necessary and sufficient condition for
this property to hold for any torsion group is also given.

1. Introduction and preliminary

Let G be a group and U(ZG) be the group of units of the integral group ring
ZG of a group G. The problem of investigating the normalizer Ny (G) of G
in U{ZG) has been already studied by several authors and is related to some
central problems in the theory of group rings (see [7, 16] for detail). Clearly,
Nu(G) contains G and also contains Z = Z(U(ZG)), the subgroup of central
units of i.

Problem 43 in [16] asks whether Ny (G) = GZ when G is finite. The equality
was first shown to hold for finite nilpotent groups by Coleman [3], and later ex-
tended by Jackowski and Marciniak [5] to all finite groups having a normal Sylow
2-subgroup. In particular, this property holds for all finite groups of odd order.
We remark that there is a close relation between this question and the isomor-
phism problem (see Mazur {13, 14, 15]). Hertweck first found counterexamples
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to the normalizer problem, and then, using them and a smart generalization of
Mazur’s results, he managed to construct a counterexample to the isomorphism
problem ([4]).

Recently, a certain amount of work on this topic has been done. Parmenter,
Sehgal and the author [11] proved that the normalizer property holds for any
finite group G, such that R(G) is not trivial, where R(G) denotes the intersec-
tion of all nonnormal subgroups of G. This has an important application in
studying the hypercentral units in integral group rings (see [1, 2, 9, 10]). In the
meanwhile, Marciniak and Roggenkamp [12] showed that this property holds for
finite metabelian groups with an abelian Sylow 2-subgroup. The latter has been
extended by the author [8]. In that paper, we first gave a necessary and sufficient
condition for the normalizer property to hold for the integral group ring of a
finite metabelian group. We then confirmed that the property holds for several
types of finite metabelian groups in which a Sylow 2-subgroup is not necessarily
an abelian group. For instance, the normalizer property holds for the integral
group ring of a split finite metabelian group with a dihedral Sylow 2-subgroup.
Little is known about this property when the group basis G is a torsion group. In
this note, we first show that the property holds for locally finite nilpotent groups
(Theorem 2.2}. We then extend a result of Jackowski and Marciniak to arbitrary
torsion groups (Theorem 2.4).

Next we introduce some terminology and preliminary results.

Definition 1.1: Let G be a torsion group. A subgroup P is called a Sylow p-
subgroup of G for a prime number p, if P is a maximal p-subgroup of G.

It is not hard to see that there exists a maximal p-subgroup of G by Zorn’s
Lemma. We remark that Sylow theorems for finite groups are no longer true
in this context. For example, not all Sylow p-subgroups are conjugates of one
another. We need the following result, and its proof can be found in [6] (1.B.10
Proposition).

LEMMA 1.2: Let G be a locally finite nilpotent group. Then G = }_ O,, where
O,, is the normal maximal p-subgroup of G, and the direct sum is taken over all
primes p.

Every unit u € Ny(G) induces an automorphism ¢ of G such that ¢, (g) =
ugu~! for all g € G. We now consider the subgroup Auty(G) formed by all such
automorphisms and it is not hard to see that the normalizer problem described
in [16] is equivalent to the Question 3.7 in Jackowski and Marciniak [5]:

“Is Auty(G) = Inn(G) for all finite groups?”
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It is convenient to use this equivalent form to discuss the normalizer problem
here and our notation follows that in [16].

2. The normalizer Ny (G) for nilpotent groups

In this section, we first confirm that the normalizer property holds for all locally
finite nilpotent groups, which extends Coleman’s result. Then we give a necessary
and sufficient condition for this property to hold for any torsion group. We need
the following lemma, which is a special case of Theorem 9 of [15].

LEMMA 2.1: Let G be a torsion group and P be any p-subgroup of G. For any
u € Ny(G), define ¢, € Aut(G) such that ¢,(g) = ugu™! for every g € G as
before. Then restricted to the subgroup P, the automorphism @, becomes inner.
Moreover, we have ¢, |p = conj(x)|p for some zg € supp(u) C G. In particular,
if G is a p-group, then Auty(G) = Inn(G), so the normalizer property holds for
G.

We include a proof for completeness.

Proof: Let u = ) u(z)z € Ny{G), where u(z) € Z and = € supp{u). For
every group element g € G, ¢(g) = ugu™! is also a group element. Rewrite
u = ¢(g)ug™!, and hence Y u(z)r = Y u(x)p(g)rg~1(x). This forces that
¢(g)rg~" is in the support of u for all g € G. Define a left group action o4 of
G on supp(u) as follows: o4(x) = (g)xg~!. It follows from () that u(x) is a
constant on each orbit of x. Restricting the action to P, we have that the p-
subgroup P acts on supp(u), and thus every orbit must have a length of p-power.

1t follows that

+1 = e(u) = Zcipl",
where € is the augmentation map, p* is the length of the orbit of z; and u(z;) = ¢;.
This forces that p% = 1 for some j; that is to say there is a fixed point of this

1

action, say xo. Therefore, we have p(g)zog™" = o4(xo) = zo for all g € P.

Consequently, ©(g) = xogxy ", and thus ¢|p = conj(zq)|p. We are done. |

Now we show that the normalizer property holds for locally finite nilpotent
groups, which extends Coleman’s result [3].

THEOREM 2.2: Let G be a locally finite nilpotent group. Then the normalizer

property holds for G.

Proof: For any u € Ny(G), define ¢ such that ©(g) = ugu~! as before. Since ¢?
is inner by Proposition (9.5) of [16}, if some odd power of ¢ is inner, then ¢ is inner
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too and we are done. We note that it follows from Theorem 1 of [15] that Auty (G)
is a torsion group for any torsion group G. By taking a suitable odd power of ¢,
we may assume that the order of ¢ is a power of 2. It follows from Lemma 1.2
that G = 3" Op, where Oy, is the largest normal p-subgroup of G and the direct
sum is taken over all primes p. By Lemma 2.1, we have that ¢|o, = conj(x;)|o,,
where x, € supp(u). Since supp(u) is a finite set, we can choose a large odd
integer [ such that (z,)' are 2-elements for all ¥, € supp(u). Again by taking
a suitable odd power of ¢, we may assume that all of these x, are 2-elements.
Therefore, x, € O, and this gives that ¢|lo, = conj(zp)lo, = id|o, for p # 2
since zp, commutes with every element of O,. We claim that ¢ = conj(zz). To
see this, we note that x3 € Oy, so conj(xz)|o, = idlo, = ¢lo, for p # 2 and
conj(z2)|o, = ¢|o,- We are done. |

In the remaining part, we extend Jackowski and Marciniak’s result ([5], 3.5
Theorem) to arbitrary torsion groups. We need the following result and a proof
can be found in [5] or [16].

LEMMA 2.3: Let G be an arbitrary group and let u be a unit of ZG. Then
u € Ny{G) if and only if uu* € Z{ZG).

For a fixed p-subgroup P of G, denote by Ip the set of all involutions in
Auty(G) which keep P pointwise fixed:

Ip = {¢ € Auty(G)|¢? = id and p|p = id}.

THEOREM 2.4: Let G be any torsion group. If Ip C Inn(G) for a maximal Sylow
2-subgroup P of G, then Auty(G) = Inn(G).

Proof: Let u € Ny(G) and let ¢ € Auty(G) be the normalized automorphism
induced by u as before. It follows from Lemma 2.1 that ¢|p = conj(go)|p for some
group element go € supp(u). Conjugating ¢ by a group element if necessary, we
may assume that ¢|p = id|p. Let v = u*u~!. Then by Lemma 2.3, we have

wo* = () ((u™) ) = u (wu) e = o (uut) e = 1

Hence v is a trivial unit and then v = ¢ for some group element ¢t € G. This says
that u* = tu, and moreover, ¢? = conj(t~1). As mentioned earlier in the proof of
Theorem 2.2, we may assume that the order of ¢ is a power of 2. Furthermore,
by the same reason, we may assume that ¢ is a 2-element. Since p?|p = id|p, we
have t € Cg(P) the centralizer of P in G. Note also that ¢ is a 2-element and
P is a maximal Sylow 2-subgroup, so we conclude that ¢ € Z(P)} the center of
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P. As we mentioned earlier in the proof of Lemma 2.1, we can define a group
action from P to supp(u). Write u = Y u(z)x as before. We recall that under
this group action u(z) is constant on each orbit of z and the length of each orbit
is always a power of 2 in the present case. Moreover, the length of the orbit of
x is 1 if and only if © € Cg(P). Rewrite u = 3y + $1, where supp(8o) C Ci(P)
and supp(B;) C G\Cq(P). Taking the augmentation of u, we obtain

+1 =e(u) = €(Bo) + ZCiQki where k; > 1.

Hence €(fy) is an odd number. It follows from the identity u* = tu that 8§ = ¢8s.
Let 8o = Y_7Ynh. Then we have > v,h™! = S ypth or Yo yph = Y yph~ 1t~ L
Thus v, = Y,-1;-1 for all h € supp(By). Since (h=*t~1)~1t~1 = h, this contra-
dicts that €(8p) is an odd number unless h = h=!t~! for some h € supp(fy). We
now conclude that =1 = h? for some 2-element h € Cg(P), and hence, h € Z(P).
Define an inner automorphism p = conj(h~1!). It follows that pp|p = id|p and
(pp)? = p?p® = conj(t) conj(t~!) = id, so py € Ip. Consequently, pp is inner
and thus ¢ is inner as desired. ]
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