
ISRAEL J O U R N A L  OF MATHEMATICS 132 (2002), 169 174 

ON THE NORMALIZER PROBLEM FOR 
INTEGRAL GROUP RINGS OF TORSION GROUPS 

BY 

YUANLIN LI* 

Department of Mathematics, Brock University 
500 Glenridge Ave., St. Catharines, Ontario, L2S 3A1 Canada 

e-mail: yli@brocku.ca 

A B S T R A C T  

In this  paper ,  we invest igate  the  normal izer  proper ty  for the  integral  

group ring of a torsion group.  We show tha t  this  p roper ty  holds for 

locally finite n i lpotent  groups.  A necessary  and  sufficient condi t ion for 

this  p roper ty  to hold for any  torsion group is also given. 

1. Introduction and preliminary 

Let G be a group and H(ZG) be the group of units of the integral group ring 

ZG of a group G. The problem of investigating the normalizer Nu(G)  of G 

in H(ZG) has been already studied by several authors and is related to some 

central problems in the theory of group rings (see [7, 16] for detail). Clearly, 

Nu(G) contains G and also contains Z = Z(H(ZG)) ,  the subgroup of central 

units of L/. 

Problem 43 in [16] asks whether Nu(G)  = G Z  when G is finite. The equality 

was first shown to hold for finite nilpotent groups by Coleman [3], and later ex- 

tended by Jackowski and Marciniak [5] to all finite groups having a normal Sylow 

2-subgroup. In particular, this property holds for all finite groups of odd order. 

We remark that there is a close relation between this question and the isomor- 

phism problem (see Mazur [13, 14, 15]). Hertweck first found counterexamples 
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to the normalizer problem, and then, using them and a smart generalization of 

Mazur's results, he managed to construct a counterexample to the isomorphism 

problem ([4]). 

Recently, a certain amount of work on this topic has been done. Parmenter, 

Sehgal and the author [11] proved that the normalizer property holds for any 

finite group G, such that R(G) is not trivial, where R(G) denotes the intersec- 

tion of all nonnormal subgroups of G. This has an important application in 

studying the hypercentral units in integral group rings (see [1, 2, 9, 10]). In the 

meanwhile, Marciniak and Roggenkamp [12] showed that this property holds for 

finite metabelian groups with an abelian Sylow 2-subgroup. The latter has been 

extended by the author [8]. In that paper, we first gave a necessary and sumcient 

condition for the normalizer property to hold for the integral group ring of a 

finite metabelian group. We then confirmed that the property holds for several 

types of finite metabelian groups in which a Sylow 2-subgroup is not necessarily 

an abelian group. For instance, the normalizer property holds for the integral 

group ring of a split finite metabelian group with a dihedral Sylow 2-subgroup. 

Little is known about this property when the group basis G is a torsion group. In 

this note, we first show that  the property holds for locally finite nilpotent groups 

(Theorem 2.2). We then extend a result of Jackowski and Marciniak to arbitrary 

torsion groups (Theorem 2.4). 

Next we introduce some terminology and preliminary results. 

Definition 1.1: Let G be a torsion group. A subgroup P is called a Sylow p- 

subgroup of G for a prime number p, if P is a maximal p-subgroup of G. 

It is not hard to see that there exists a maximal p-subgroup of G by Zorn's 

Lemma. We remark that Sylow theorems for finite groups are no longer true 

in this context. For example, not all Sylow p-subgroups are conjugates of one 

another. We need the following result, and its proof can be found in [6] (1.B.10 

Proposition). 

LEMMA 1.2: Let G be a locally finite nilpotent group. Then G -- ~ Op, where 

Op is the normal maximal p-subgroup of G, and the direct sum is taken over all 

primes p. 

Every unit u E Nu(G) induces an automorphism ~ of G such that ~u(g) = 

ugu -I  for all g E G. We now consider the subgroup Autu(G) formed by all such 

automorphisms and it is not hard to see that the normalizer problem described 

in [16] is equivalent to the Question 3.7 in Jackowski and Marciniak [5]: 

"Is Autu (G) = Inn(G) for all finite groups?" 
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It  is convenient to use this equivalent form to discuss the normalizer problem 

here and our notation follows that  in [16]. 

2. T h e  n o r m a l i z e r  Nu(G) for  n i l p o t e n t  g r o u p s  

In this section, we first confirm that  the normalizer property holds for all locally 

finite nilpotent groups, which extends Coleman's result. Then we give a necessary 

and sufficient condition for this property to hold for any torsion group. We need 

the following lemma, which is a special case of Theorem 9 of [15]. 

LEMMA 2.1: Let G be a torsion group and P be any p-subgroup of G. For any 

u E Nu(G),  define ~ E Aut(G) such that ~ ( g )  = ugu -1 for every g E G as 

before. Then restricted to the subgroup P, the automorphism ~u becomes inner. 

Moreover, we have ~ [ p  = conj(xo)ip for some xo E supp(u) C G. In particular, 

i f  G is a p-group, then Autu(G) ~- Inn(G),  so the normalizer property holds for 

G. 

We include a proof for completeness. 

Proo~ Let u = ~-~u(x)x E Nu(G),  where u(x) E Z and x E supp(u). For 

every group element g E G, p(g) = ugu -1 is also a group element. Rewrite 

u = ~(g)ug -1, and hence ~ u ( x ) x  = ~ u ( x ) ~ ( g ) x g - l ( * ) .  This forces that  

p(g)xg -1 is in the support  of u for all g E G. Define a left group action a 9 of 

G on supp(u) as follows: ag(x) = ~(g)xg -1. It  follows from (.) that  u(x) is a 

constant on each orbit of x. Restricting the action to P,  we have that  the p- 

subgroup P acts on supp(u), and thus every orbit must have a length of p-power. 

It  follows that  

=~1 = ~(~) = ~ c~p l~, 

where e is the augmentation map, pt~ is the length of the orbit of xi and u(xi) = ci. 

This forces that  pZj = 1 for some j ;  that  is to say there is a fixed point of this 

action, say x0. Therefore, we have ~(9)xog -1 = ag(xo ) = xo for all g E P.  

Consequently, ~(g) = xogxo 1, and thus PiP = conj(x0)lP. We are done. I 

Now we show that  the normalizer property holds for locally finite nilpotent 

groups, which extends Coleman's result [3]. 

THEOREM 2.2: Let G be a locally finite nilpotent group. Then the normalizer 

property holds for G. 

Proof'. For any u E Nu(G),  define ~ such that  ~(g) = ugu -1 as before. Since ~2 

is inner by Proposition (9.5) of [16], if some odd power of ~ is inner, then ~ is inner 
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too and we are done. We note that  it follows from Theorem 1 of [15] that  Autu (G) 

is a torsion group for any torsion group G. By taking a suitable odd power of ~, 

we may assume that  the order of ~ is a power of 2. It  follows from Lemma 1.2 

that  G = ~ Op, where Op is the largest normal p-subgroup of G and the direct 

sum is taken over all primes p. By Lemma 2.1, we have that  Plop = conj(xp)iop, 

where xp E supp(u). Since supp(u) is a finite set, we can choose a large odd 

integer l such that  (Xp) l are 2-elements for all Xp C supp(u). Again by taking 

a suitable odd power of ~, we may assume that  all of these Xp are 2-elements. 

Therefore, Xp E 02, and this gives that  ~[op = conj(xp)iop = idiop for p # 2 

since Xp commutes with every element of Op. We claim that  ~ = conj(x2). To 

see this, we note that  x2 E 02, so conj(x2)]op = idIo p = ~1o~ for p # 2 and 

conj(x2)Io2 = ~[o2- We are done. I 

In the remaining part,  we extend Jackowski and Marciniak's result ([5], 3.5 

Theorem) to arbi trary torsion groups. We need the following result and a proof 

can be found in [5] or [16]. 

LEMMA 2.3: Let G be an arbitrary group and let u be a unit of ZG. Then 

u e Nu(G) i f  and only ifuu* �9 Z(ZG) .  

For a fixed p-subgroup P of G, denote by IF the set of all involutions in 

Autu (G) which keep P pointwise fixed: 

IF = {~ �9 Autu(G)[~ 2 = id and p ip  = id}. 

THEOREM 2.4: Let G be any torsion group. I[ Ip C_ Inn(G) for a maximal Sylow 

2-subgroup P of G, then Autu (G) = Inn(G). 

Proo~ Let u E Nu(G) and let ~ E Autu(G) be the normalized automorphism 

induced by u as before. It  follows from Lemma 2.1 that  ~PlP -~-- c~  for some 

group element go E supp(u). Conjugating ~ by a group element if necessary, we 

may assume that  (f l ip : idip. Let v = u*u -1. Then by Lemma 2.3, we have 

v v *  = ( u * u - 1 ) ( ( u - ' ) * u )  = = = 1. 

Hence v is a trivial unit and then v = t for some group element t E G. This says 

that  u* = tu, and moreover, ~2 = conj (t -1).  As mentioned earlier in the proof of 

Theorem 2.2, we may assume that  the order of ~ is a power of 2. Furthermore, 

by the same reason, we may assume that  t is a 2-element. Since ~2]p = idip, we 

have t E CG(P) the centralizer of P in G. Note also that  t is a 2-element and 

P is a maximal Sylow 2-subgroup, so we conclude that  t E Z ( P )  the center of 
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P .  As we mentioned earlier in the proof  of Lemma 2.1, we can define a group 

action from P to supp(u).  Write u = ~ u(x )x  as before. We recall tha t  under 

this group action u(x) is constant  on each orbit  of x and the length of each orbit  

is always a power of 2 in the present case. Moreover, the length of the orbit  of 

x is 1 if and only if x E Ca(P) .  Rewrite u =/30 +/31, where supp(/3o) C_ Ca(P)  

and supp(/31) C G\CG(P) .  Taking the augmenta t ion  of u, we obtain 

•  = e(u) = e(/3o) + E ci2k~ wherek i>_  1. 

Hence e(/3o) is an odd number.  I t  follows from the identi ty u* = tu tha t  ~ = t/3o. 

Let/30 = E %h.  Then  we have ~ 7hh -1 = E 7hth or E 7hh = E % h - l t - l "  

Thus % = %-1t-1 for all h E supp(/30). Since ( h - l t - 1 ) - l t  -1 = h, this contra- 

dicts tha t  e(/30) is an odd number  unless h = h - i t  -1 for some h E supp(/30). We 

now conclude tha t  t -1 = h 2 for some 2-element h E Ca(P) ,  and hence, h E Z (P) .  

Define an inner au tomorphism p = conj(h-1) .  It  follows tha t  P~IP = idIp and 

(p~)2 = p2~22 = conj( t )conj( t  -1)  = id, so p~ E Ip.  Consequently, pp  is inner 

and thus ~ is inner as desired. | 

References 

[1] S. R. Arora, A. W. Hales and I. B. S. Passi, Jordan decomposition and hypercentral 
units in integral group rings, Communications in Algebra 21 (1993), 25-35. 

[2] S. R. Arora and I. B. S. Passi, Central height of the unit group o[an integral group 
ring, Communications in Algebra 21 (1993), 3673-3683. 

[3] D. B. Coleman, On the modular group ring of a p-group, Proceedings of the 
American Mathematical Society 15 (1964), 511-514. 

[4] M. Hertweck, A counterexample to the isomorphism problem for integral group 
rings, Annals of Mathematics 154 (2001), 115-138. 

[5] S. Jackowski and Z. Marciniak, Group automorphisms inducing the identity map 
on cohomology, Journal of Pure and Applied Algebra 44 (1987), 241-250. 

[6] O. H. Kegel and B. A. F. Wehrfritz, Locally Finite Groups, North-Holland, 
Amsterdam-London, 1973. 

[7] W. Kimmerle, O12 the normalizer problem, in Algebra: Some Recent Advances 

(Cambridge), Indian National Science Academy, Hindustan Book Agency, 1999, 
pp. 89-98. 

[8] Y. Li, The normalizer of a metabelian group in its integral group ring, Journal of 
Algebra, to appear. 



174 Y. LI Isr. J. Math. 

[9] Y. Li, The hypercentre and the n-centre of the unit group of an integral group 

ring, Canadian Journal of Mathematics 50 (1998), 401-411. 

[10] Y. Li and M. M. Parmenter, Hypercentral units in integral group rings, Proceedings 
of the American Mathematical Society 129 (2001), 2235-2238. 

[11] Y. Li, M. M. Parmenter and S. K. Sehgal, On the normalizer property for integral 

group rings, Communications in Algebra 27 (1999), 4217-4223. 

[12] Z. S. Marciniak and K. W. Roggenkamp, The normalizer of a finite group in its 

integral group ring and cecb cohomology, in Algebra Representation Theory, 

2001, Kluwer Academic Publishers, Dordrecht, 2001, pp. 159-188. 

[13] M. Mazur, Automorphisms of finite groups, Communications in Algebra 22 (1994), 

6259-6271. 

[14] M. Mazur, On the isomorphism problem for integral group rings of infinite groups, 
Expositiones Mathematicae 13 (1995), 433-445. 

[15] M. Mazur, The normalier of a group in the unit group of its group ring, Journal 

of Algebra 212 (1999), 175 189. 

[16] S. K. Sehgal, Units in Integral Group Rings, Longman Scientific & Technical Press, 

Harlow, 1993. 


